21世纪的天文学_请问天文学基本概念是哪些?主要是基础,初中的。以及高中一些基本计算。

20世纪50年代起射电天文学的发展情况是怎样的?20世纪50年代起,随着射电天文探测技术的提高,射电天文学得以迅速发展,可探测从毫米到米波的宇宙电磁辐射。人们透过这一新开启的射电窗口,可以看到宇宙面貌的另一侧面,研究星际氢和分子云等温度低于100K的冷天体,以及像超新星遗迹和射电星系之类

20世纪50年代起射电天文学的发展情况是怎样的?

20世纪50年代起,随着射电天文探测技术的提高,射电天文学得以迅速发展,可探测从毫米到米波的宇宙电磁辐射。人们透过这一新开启的射电窗口,可以看到宇宙面貌的另一侧面,研究星际氢和分子云等温度低于100K的冷天体,以及像超新星遗迹和射电星系之类干扰天体的非热辐射。它对于揭示宇宙间大规模剧烈活动起了重大作用。贾可尼等人发现的X射线源就是通过射电观测取得的重要成果。此外,20世纪60年代射电天文学的四大发现则是射电天文学迅速发展的重要标志。

20世纪60年代天文学的四大发现是什么呢?

20世纪60年代天文学的一系列发现和所取得的进展中,有4项被认为特别重要,它们是:星际分子,类星体,微波背景辐射和脉冲星。它们被誉为是60年代中的四大天文发现。这四大发现都是通过射电天文手段和方法获得的。其中的两项,即微波背景辐射和脉冲星,发现者后来都获得了诺贝尔物理学奖金。1、星际分子:20世纪30年代,首先发现了第一种星际分子,接着又发现了两种。1963年,美国科学家发现星际羟基分子(OH),此后,陆续发现大量星际有机分子。到80年代末,已发现了80多种,而且许多都是很复杂的有机分子,少数分子是地球上很难找到的或者根本找不到的。星际分子的发现有助于人类对星云特性的深入了解,可以帮助揭开生命起源的奥秘。2、类星体:第一颗类星体3C48是荷兰科学家施米时在1960年发现的。第二颗类星体3C273是在1963年发现的,这两个天体在外貌上看起来都像是颗恒星,从红移值比星系都大看来,它们根本不可能是恒星。这种类似恒星而又不是恒星的天体就被称为“类星体”。除了类星和巨大红移之外,类星体的又一主要特征是发射出的能量特别大。从60年代初到80年代初,总共发现了1500颗类星体。1982年,中国天文工作者何香涛创造性地改进了认证类星体的方法,一下就发现了500颗新类星体。3、1964年,美国贝尔电话实验室的彭齐亚斯和威尔逊为了检验一台巨型天线的低澡声性能,而把天线对准了没有明显天体的天区进行测量。他们发现,无论把天线指向何方,总能收到一定的噪声。后来发现噪声信号来自外部空间。科学家对这种微波辐射进行了比较分析。所谓辐射,就是电磁波,也就是光子气体。进一步的精确测量显示,这种辐射的温度相当于绝对温度3K的黑体辐射。由于这种辐射充满整个天球,形成了整个宇宙背景的辐射,所以称为3K宇宙微波背景辐射。它说明宇宙在200亿年前的大爆炸中,从高温致密态下脱胎出来。大爆炸的效应使得宇宙在不断膨胀,其密度不断变小,温度也逐渐下降。4、1967年,当时只有24岁的英国剑桥大学女研究生贝尔,和导师休伊什在狐狸座内发现了第一颗脉冲星。它是20世纪30年代就预言的中子星。所谓中子星,主要是由一种叫作中子的基本粒子组成超密恒星,它的直径只有10千米左右,自转特别快,周期性地发出脉冲。除此之外,脉冲星还具有许多独特的性质:(1)自转特别快,已发现的脉冲星周期都在0.002-4.3秒间,而且非常稳定;(2)密度特别大,1立方厘米可达1亿吨以上;(3)温度特别高,表面温度可达1000万摄氏度,相当于太阳中心温度的2/3,而其中心温度竟高达60亿摄氏度;(4)压力特别高,中心压力可达10000亿亿亿个大气压;(5)辐射特别强,是太阳的百万倍;(6)磁场特别强。到80年代末,已发现四五百颗脉冲星。

17-18世纪天文学的发展

古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有5、6千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。 天文学的研究范畴和天文的概念从古至今不断发展。在古代,人们只能用肉眼观测天体。2世纪时,古希腊天文学家托勒密提出的地心说统治了西方对宇宙的认识长达1000多年。直到16世纪,波兰天文学家哥白尼才提出了新的宇宙体系的理论——日心说。到了1610年,意大利天文学家伽利略独立制造折射望远镜,首次以望远镜看到了太阳黑子、月球表面和一些行星的表面和盈亏。在同时代,牛顿创立牛顿力学使天文学出现了一个新的分支学科天体力学。天体力学诞生使天文学从单纯描述天体的几何关系和运动状况进入到研究天体之间的相互作用和造成天体运动的原因的新阶段,在天文学的发展历史上,是一次巨大的飞跃。希腊化时代天文学希腊化时代 天文学的水平,直到近代初期之后很久才“重新”达到。在讲四大天文学家(有的身兼地理学家)之前,先介绍些背景。 在希腊化时代之初(前4世纪),发生了古代版的“地理大发现”。毕特阿斯绕过不列颠诸岛驶向北冰洋边缘;汉诺航行到了非洲西岸;亚历山大进军印度,并派考察队去调查里海究竟是湖还是海。随着视野的扩大和知识的增进,地球是一个球体已成为科学界共识,埃克潘达斯(Ecphantus)观察到昼夜长短随纬度不同,进而提出地球在宇宙中央绕地轴自转。自然地,测定地球大小就成了下一步议题。http://baike.baidu.com/view/20776.htm

2206年8月24日国际天文学联合会第26届投票决定将哪个行星降级为“矮行星”

布拉格8月24日电国际天文学联合会大会24日投票通过新的行星定义,冥王星被“逐出”行星行列,而被编入“矮行星”。由此,除太阳外,一个包括行星、矮行星和太阳系小天体在内的太阳系新“家谱”呈现在了我们面前。 一、行星 成员包括水星、金星、地球、火星、木星、土星、天王星和海王星。 定义:围绕太阳运转,自身引力足以克服其刚体力而使天体呈圆球状,并且能够清除其轨道附近其他物体的天体。 二、矮行星 成员包括冥王星、冥卫一和谷神星等。 定义:与行星同样具有足够的质量,呈圆球状,但不能清除其轨道附近其他物体的天体。 三、太阳系小天体 定义:围绕太阳运转但不符合行星和矮行星条件的物体。参考资料:百度百科:行星新定义

16世纪,波兰天文学家哥白尼提出了“日心说”理论 对或错

在当时是进步的,但现在看还是错的。他认为太阳是宇宙的中心。其实只是太阳系的中心。

恒星周年视差是德国天文学家谁先发现的

在19世纪30年代,德国天文学家(也是当代数学家)贝塞尔使用了一种叫做量日仪的新仪器,因为这种仪器最初是想用来精密地测量太阳的直径的。但用它同样能够测量天体间的其他距离,贝塞尔就用它来测量两个恒星之间的距离。贝塞尔月复一月地注意这些距离的变化,终于成功地测出了一个恒星的视差。他选择的是天鹅座的一颗小星,叫做天鹅座61星。他之所以选定这颗星,是因为这颗星相对于其他恒星背景每年都显示出特别大的自行,因此它一定比其他恒星离我们近。(不要把这种自行与恒星相对于背景的前后移动相混淆,后者表示的是视差)贝塞尔以附近“固定的”恒星(可能要远得多)为基准,测定天鹅座61星连续移动的位置,持续观测了一年多。最后在1838年,他报告说天鹅座61星的视差为0. 31角秒,即相当于把一枚5分硬币放在16千米远处观看时的视角。这个视差是以地球轨道的直径为基线观测到的,这表明天鹅座61星在大约100万亿千米远处,为我们太阳系宽度的9000倍。因此,即使和最近的恒星相比,太阳系也像是空间的一个小点。